Testing MathJax on Blogger
Following suggestions on
http://holdenweb.blogspot.com/2011/11/blogging-mathematics.html
\[\int_0^\infty \exp(-x) \mathrm{d} x = \left[-\mathrm{e}^{-x}\right]_{0}^\infty = 1\,.\]
Looks OK!
$\def\N{\mathbb N}$ $\def\F{\mathbb F}$ $\def\R{\mathbb R}$ $\def\C{\mathbb C}$ $\def\jq{\;\,}$ $\def\rd{\textrm{d}}$ $\def\Rbar{{\overline{\mathbb{R}}}}$ $\def\Pset{{\mathcal{P}}}$ $\def\Jds{\displaystyle}$ $\def\Jand{\quad\textrm{and}\quad}$ $\def\Jdisplay{\qquad\qquad\qquad\displaystyle}$ $\def\ve{\varepsilon}$ $\def\jnorm{\|\cdot\|}$ $\def\op{\mathrm{op}}$ $\def\RHS{\mathrm{RHS}}$ $\def\LHS{\mathrm{LHS}}$ $\def\lin{\mathop{\mathrm{lin}}}$ $\def\i{\mathrm{i}}$ $\def\Re{\mathop{\mathrm{Re}}}$ $\def\Im{\mathop{\mathrm{Im}}}$
It would be good if I could edit my comments though!
ReplyDelete$$\int_{-\infty}^\infty \exp(-x^2)\,\mathrm{d}x$$
ReplyDelete