Discussion of the proof that the uniform norm really is a norm
In response to a request on Piazza, I gave a detailed proof that the uniform really is a norm, including some comments and warnings on possible pitfalls along the way. Here (essentially) is what I said. Let’s have a look at \(\|\cdot\|_\infty\) on the bounded, real-valued functions on \([0,1]\) (but you can also work with bounded functions on any non-empty set you like, and the same proof will work). We define \(\ell_\infty([0,1]) = \{f: f \textrm{ is a bounded, real-valued function on }[0,1]\,\}\,,\) and this is the set/space we will look at. So we set \(Y=\ell_\infty([0,1])\). Then you can check for yourselves that \(Y\) really is a vector space over \(\mathbb{R}\) (using the usual "pointwise" operations for functions). Note that the zero element in this vector space is the constant function \(0\) (from \([0,1]\) to \(\mathbb{R}\)), which I'll denote by \(\mathbf{0}\) here for clarity. (We also used \(Z\) for this function in one of the exercises.) I'll first give...